M3
Question 1.1:
Find the root of the equation π₯
3 − 3π₯ − 5 = 0 on the interval [2, 3] using bisection method
correct to three decimal places.
// Scilab code for Bisection method
clc;
clear;
close;
deff('y = f(x)' , 'y = x^3-3*x-5') ;
x1 = 2, x2 = 3;
e = 0.0001 ;
c = 0 ;
printf('Successive approximations \n \t x1 \t \t x2 \t \t m \t
\t f(m)\n');
while abs(x1-x2)>e
m = (x1+x2)/2 ;
printf('\t%f\t%f\t%f\t%f\n', x1, x2, m, f(m));
if f(m)*f(x1) > 0
x1 = m ;
else
x2 = m ;
end
c = c+1 ; // to count number of iterations
end
printf('Solution of equation after %i iteration is %8.4f', c,
m)
Question 2.1. Use Newton-Raphson method to find a root of π(π₯) = π₯
3 + 2π₯
2 + 0.4 = 0
which lies near π₯0 = −2, with a tolerance of 0.01%.
// Scilab code for Newton-Raphson method
clc;
clear;
close
deff('y=f(x)','y=x^3+2*x^2-0.4');
deff('y1=f1(x)','y1=3*x^2+4*x');
x0=-2;
e=0.0001;
c=0; n=1;
printf('Successive iterations\n\tx0\t\tf(x0)\t\tf1(x0)\n');
while n==1
x2=x0;
x1=x0-(f(x0)/f1(x0));
x0=x1;
printf('\t%f\t%f\t%f\n', x2, f(x1), f1(x1) )
c=c+1;
if abs(f(x0))<e then
break;
end
end
printf('The root of %i iteration is:%8.4f', c, x0);
Exp 3
//Scilab Code for fitting a straight line to given set of data points (x, y)
clc;
n = input('Enter the no. of pairs of values (x, y):')
disp('Enter the values of x:')
for i=1:n
x(i)=input(' ')
end
disp('Enter the corresponding values of y')
for i=1:n
y(i)=input(' ')
end
sumx=0; sumx2=0; sumy=0; sumxy=0
for i=1:n
sumx=sumx+x(i);
sumx2=sumx2+x(i)*x(i);
sumy=sumy+y(i);
sumxy=sumxy+x(i)*y(i);
end
A=[sumx n; sumx2 sumx];
B=[sumy; sumxy];
C=inv(A)*B ;
printf('The line of best fit is y =(%g)x+(%g)', C(1,1),C(2,1))
Question 4.1. Evaluate ∫ √πππ (π₯)
π/2
0
ππ₯ by using Trapezoidal rule into 6 sub-intervals.
//Scilab Code for Trapezoidal Rule
clc;
clear;
close;
deff('y=f(x)','y=sqrt(cos(x))')
a=input ("Enter Lower Limit: ")
b=input ("Enter Upper Limit: ")
n=input ("Enter number of sub-intervals: ")
h=(b-a)/n
add1=0
add2=0
for i=0 : n
x=a + i * h
y=f(x)
disp([x y])
if(i==0)|(i==n)
add1=add1+y
else
add2=add2+y
end
end
I=(h/2)*(add1+2*add2)
disp("Integration by Trapezoidal Rule is:", I)
Question 5.1. Evaluate ∫ π
−π₯
1 2
0
ππ₯ by using Simpson’s 1/3 rule with 6 sub-intervals.
//SciLab code for Simpson's (1/3) Rule
clc;
clear;
close;
deff('y=f(x)','y=exp(-x^2)')
a=input("Enter Lower Limit: ")
b=input("Enter Upper Limit: ")
n=input("Enter number of sub-intervals: ")
h=(b-a)/n
add1=0
add2=0
add3=0
for i=0:n
x=a+i*h
y=f(x)
disp([x y])
if (i==0)|(i==n) then
add1=add1+y
else if (modulo(i,2)==0) then
add2=add2+y
else
add3=add3+y
end
end
end
I=(h/3)*(add1+2*add2+4*add3)
disp("Integration by Simpsons (1/3) Rule is:", I)
Question 6.1. Using Taylor's series method, solve the differential equation
ππ¦
ππ₯
= π₯
2 + π¦, given π¦(0) = 1 for π₯ = 0.4.
//Scilab code for Taylor's series method
clear ;
close ;
clc ;
deff('F = f(x,y)','F = x^2+y')
deff('D2Y = d2y(x,y)','D2Y = 2*x + f(x,y)');
deff('D3Y = d3y(x,y)','D3Y = 2 + d2y(x,y)’);
deff('D4Y = d4y(x,y)','D4Y = d3y(x,y)’);
deff('Y = y(x)','Y = 1 + f(0,1)*x + d2y(0,1)*x^2/2
+ d3y(0,1)*x^3/6+d4y(0,1)*x^4/24');
printf('y(0.4) = %8.5g ',y(0.4))
Question 6.2. Given
ππ¦
ππ₯
= 2π¦ + 3π
π₯
, π¦(0) = 0, find π¦(0.2) using Taylor series method
//Scilab code for Taylor's series method
clear ;
close ;
clc ;
deff('F = f(x,y)','F = 2*y+3*exp(x)')
deff('D2Y = d2y(x,y)','D2Y = 2*f(x,y)+3*exp(x)');
deff('D3Y = d3y(x,y)','D3Y = 2*d2y(x,y)+3*exp(x)');
deff('D4Y = d4y(x,y)','D4Y = 2*d3y(x,y)+3*exp(x)');
deff('Y = y(x)','Y = 0 + f(0,0)*x + d2y(0,0)*x^2/2 +
d3y(0,0)*x^3/6+d4y(0,0)*x^4/24');
printf('y(0.2) = %8.5g ',y(0.2))
Question 7.1. Find π¦(2.5) using Runge-Kutta 4
th order formula given that
π¦
′ =
π₯+π¦
π₯
, π¦(2) = 2. Take β = 0.1.
// Scilab code for Runge Kutta 4
th order
clc;
close;
clear;
deff('g=f(x,y)','g = (x+y)/x')
xo=input("Enter initial value of xo: ")
yo=input("Enter the value of yo: ")
h=input("Enter value of h: ")
xn=input("Enter Final value of xn: ")
n=(xn-xo)/h
for i=1:n
k1=h*f(xo,yo)
k2=h*f(xo+(h/2),yo+(k1/2))
k3=h*f(xo+(h/2),yo+(k2/2))
k4=h*f(xo+h,yo+k3)
y1=yo+(1/6)*(k1+2*k2+2*k3+k4)
xo=xo+h
disp([xo y1])
yo=y1
end
Question 8.1.
The contents of three urns are: 1 white, 2 red, 3 green balls; 2 white, 1 red, 1 green ball and
4 white, 5 red, 3 green balls. Two balls are drawn from an urn chosen at random. These are
found to be one white and one green. Find the probability that the balls so drawn came
from the third urn
clear ;
close ;
clc ;
Let E1 = Urn I is chosen
Let E2 = Urn II is chosen
Let E3 = Urn III is chosen
Let A = Two balls are drawn at random & white and red.
p(1) = p(2) = p(3) = 1/3 // p(Selection of urn)
p(4) = 1/5; //p(1)= p(A/E1)=p(White and red from Urn I)
p(5) = 1/3; //p(1)= p(A/E2)=p(White and red from Urn II)
p(6) = 2/11; //p(1)= p(A/E3)=p(White and red from Urn III)
Prob = p(3)*p(6)/(p(1)*p(4)+p(2)*p(5)+p(3)*p(6));
disp(Prob, 'Probability that the balls drawn from the third
urn:');
clear ;
close ;
clc ;
mu=4300;
sig=750;
X=2500:0.001:4200;
n=(4200-2500)/0.001;
z=(X-mu)./sig;
h=z(2)-z(1);
f=((1/sqrt(2*%pi))*exp(-(z.^2)/2));
Value=h*(sum(f)-(f(1)/2)-(f(n+1)/2))
disp(Value, Probability that between 2500 and 4200 acres will
be burned)
plot(X,f)
Question 10.1. Calculate the Karl Pearson's correlation coefficient for the following
paired data.
Price
10 20 30 40 50 60 70
Supply (Units) 8 6 14 16 10 20 24
//Scilab code for Correlation coefficient by Karl Pearson method
clear ;
close ;
clc ;
X=[10 20 30 40 50 60 70]
Y=[8 6 14 16 10 20 24]
N=7;
Sx=0;Sy=0;Sxy=0;Sx2=0;Sy2=0;r=0;
for(i=1:N)
Sx=Sx+X(i);
Sy=Sy+Y(i);
Sxy=Sxy+X(i)*Y(i);
Sx2=Sx2+X(i)*X(i);
Sy2=Sy2+Y(i)*Y(i);
end
r=(Sxy-((Sx*Sy)/N))/(sqrt(Sx2-((Sx*Sx)/N))*sqrt(Sy2-
((Sy*Sy)/N)))
disp('Karl Pearsons correlation coefficient r is:', r)
Question 10.2. From the following data compute Karl Pearson’s coefficient of
correlation.
X 9 8 7 6 5 4 3 2 1
Y 15 16 14 13 11 12 10 8 9
//Scilab code for Correlation coefficient by Karl Pearson method
clear ;
close ;
clc ;
X=[9 8 7 6 5 4 3 2 1]
Y=[15 16 14 13 11 12 10 8 9]
N=9;
Sx=0;Sy=0;Sxy=0;Sx2=0;Sy2=0;r=0;
for(i=1:N)
Sx=Sx+X(i);
Sy=Sy+Y(i);
Sxy=Sxy+X(i)*Y(i);
Sx2=Sx2+X(i)*X(i);
Sy2=Sy2+Y(i)*Y(i);
end
r=(Sxy-((Sx*Sy)/N))/(sqrt(Sx2-((Sx*Sx)/N))*sqrt(Sy2-
((Sy*Sy)/N)))
disp('Karl Pearsons correlation coefficient r is:', r)
Comments
Post a Comment